
1 

Mondel: An Object-Oriented  
Specification Language 

 

 

Gregor v. Bochmann, Michel Barbeau, Mohammed Erradi,  

Louis Lecomte, Pierre Mondain-Monval, and Normand Williams 

 

Centre de Recherche Informatique de Montréal (CRIM) 

3744, rue Jean-Brillant, Bureau 500 

Montréal, Québec, Canada, H3T 1P1 

 

and  

 

Département d'IRO, Université de Montréal  

CP 6128, Succursale A 

Montréal, Québec, Canada, H3C 3J7 
 
Abstract: In this paper, we present the object-oriented language Mondel. 
Mondel is an executable specification language with a formally defined 
semantics. It supports persistency and concurrency. Issues related to the 
choice of the language features are discussed. We also propose a 
methodology to guide the designer during the development of a 
specification. Mondel and the methodology are illustrated by a simple 
database example. Moreover, we give an overview of the formal 
semantics of Mondel  and explain its use for the development of an 
execution environment, and for the formal verification of Mondel 
specifications using techniques from coloured Petri nets. The 
development of a reflective language definition is also discussed. 

 



2 

1.  Introduction 

 

This paper presents a new object-oriented specification language, called Mondel. More 

importantly, the paper discusses the language concepts which are important for a 

specification language to be applied in the area of distributed systems. This work was 

performed in the context of a CRIM-BNR research project for the modelling of the 

management and operational aspects of communication networks, in particular fault 

detection and recovery. However, we think that the same principles apply to the 

specification of other kinds of distributed systems, such as real-time control systems for 

automated manufacturing and other applications. 

 

A large number of object-oriented languages have been developed recently. Table 1 

shows the characteristics of those languages that were particularly considered during the 

design of  Mondel. Also a number of interesting non object-oriented specification 

languages exist, in particular for the description of OSI communication protocols and 

services [ISO 87b, ISO 87c, CCITT 87]. We have developed this new language, since we 

considered that none of the existing languages fitted sufficiently well (1) the 

requirements for writing system descriptions at the specification and design level, (2) 

supporting concurrency as required for distributed systems, and (3) being object-oriented 

with support for persistency. 

 

Much literature exists about the advantages of object-oriented languages (e.g. [Meye 88]) 

and databases [Gard 87]. In summary, we believe that the following aspects of "object-

orientation" are of particular importance: 

 

(1) Humans tend to think in terms of models of the real world in which "objects"  are 

the unit of consideration. It is therefore natural to have objects within the  

specification of a system to be developed. In addition, a system specification often  

contains "specified objects" which represent the objects of the real world that are  

controlled by the specified control system. 

 

(2) Using objects as building blocks for specifications and programs provides for 

information hiding [Parn 72]. Only a fixed set of operations and functions are 

externally visible; internal aspects cannot be used for the design of other objects. 

 



3 

(3) The inheritance structure of object classes (found in most object-oriented 

languages) is a useful concept for the structuring of complex specifications and 

programs. It also plays an important role for the issues of reusability and extensibility 

of specifications or parts thereof. 

 

(4) The concept of a class of "persistent" objects corresponds to the notion of entities 

stored in databases. They have a lifetime of their own, independently of the 

application programs using them. They often correspond to objects in the real world. 

 

It has often been observed that a language leaves much freedom to the user of the 

language, and that methodologies for the development of specifications, designs and 

programs are required to guide the analyst/programmers during their work. Traditional 

design methodologies are either functionally oriented (e.g. Structured Analysis [Ward 

89]) or concerned with the design of databases (e.g. entity-relationship methodology 

[Chen 76]). We believe that these aspects must be integrated in a methodology and 

language for developing object-oriented specifications/designs.  

 

Section 2 describes such an object-oriented methodology for system design which is 

based on similar approaches described in the literature. We have applied this 

methodology and the Mondel language to the development of a specification of 

management aspects of communication networks [Boch 90a], of the OSI Reference 

Model [Mond 90b], and of the OSI Directory system specification [Poir 90]. A simple 

example is discussed in Section 4 below.  

 

Section 3 presents the major characteristics of the Mondel language and discusses the 

issues related to the choice of the language features. We try to give justifications for the 

various design choices which were made for the design of the language. 

  

A specification written in Mondel, like any other system specification, needs to be 

validated. It also represents the basis for further system refinement or implementation, it 

is the basis for the development of test cases, and the reference in respect to which the 

test results, obtained from executing the refined system specification or implemention, 

are analysed (see e.g. [Boch 90c]). In order to support these different development 

activities, a specification language should have a formally defined syntax and semantics, 

and should be executable, as much as possible. Section 5 presents our approach to the 

formal definition of the semantics of Mondel, presents a simulation system written in 



4 

Prolog, and discusses issues related to the validation of specifications. We also discuss a 

reflective language definition which could provide the theoretical basis for handling 

dynamic updates of the specification during its execution. This is important for the 

maintenance of on-line systems. 

 

Several object-oriented programming/specification languages have been proposed in the 

literature. We believe that Mondel is both original and interesting because of the 

following aspects: 

 

(1) It is readable and combines many concepts which, to the best of our knowledge, 

are not found in another single object-oriented language. 

 

(2) It is supported by a methodology for guiding the users in the production of either 

a global or a detailled design specification. 

 

(3) It is an executable specification language with a formally defined semantics. 



5 

2.  Design Methodology 

 

This section presents an object-oriented software design methodology. The goal is to 

provide some simple, efficient, means to structure the process leading from some 

informal application specification to a formal object-oriented design.This methodology is 

based on the concept of objects; i.e., that software applications can be designed based on 

the principle of aggregating data items together with operations performed on them. The 

application can be seen as a composition of such objects. Advantages of this design 

approach are numerous though it still stays a very informal, intuitive, process based on 

human expertise. This methodology was defined [Mond 90a] for the Mondel language, 

whose main features are described in Section 3. However, we believe it is general enough 

to be applied to any object-oriented language. Second, this methodology acknowledges 

the need to relate object-oriented concepts to the more classical, function oriented, design 

practices [Ward 89, Bois 89]. Thus our methodology uses some Entity/Relationship 

concepts [Chen 76] already widely applied to software design. Finally, it appears that a 

generic design methodology can always be adapted for some specific applications areas. 

Also it seems highly desirable to stay as close as possible to the practices of 

telecommunication [T1M1 89, ISO 89a, ISO 89b, ISO 89c, ISO 89d], distributed 

processing [ODP 88], and various other information processing standardization groups 

[ISO 87a]. 

 

Current object-oriented design methods usually comprise a certain number of design 

phases. Though not all practitioners agree on the number and the denomination of these 

phases, all come up with approximately the same philosophy [Booc 86, Meye 87, Bail 

88, Bail 89, Jalo 89, Bail 90]. We identified four major phases that can be iterated until a 

satisfactory design is obtained:  

 

(1) A preliminary phase first consists of the identification of the general problem 

area, of the specific aspects we want to handle, and also on the aim of the expected 

design; this phase is an informal one, but it should lead the designer to separate the 

different aspects included in the application, and also to precisely define the intended 

purposes of the model to be elaborated. 

 

(2) A second phase consists of the identification of the key components of the so-

called "application domain"; this phase takes as input any information describing the 

functionalities to be provided, and should produce as a   result a set of entities, 



6 

together with relationships among them, that can be easily mapped onto object-

oriented languages constructs. 

 

(3) The third phase is concerned with the allocation of the functions to be provided as 

operations offered by objects identified in the previous phase; some functions will 

also uncover some new objects which must be integrated in the application domain. 

 

(4) The last phase is concerned with the definition of the behaviors of the objects; 

these behaviors consider the possible sequences of operation calls as well as the 

necessary processing associated with each operation; complex objects can be 

specified as smaller "applications"; i.e., the design process starting in Phase 2 can be 

applied to each individual object as it is applied to the global application. 

 

The following sections provide some more details on each of the previous phases 

together with some references to a simple manufacturer database definition example 

presented in Section 4. 

 

2.1  Phase 1: Problem Definition 

 

This preliminary phase must help the designer to focus on relevant aspects of the general 

application area. For example, let us consider our first experimentation in the network 

management area [Boch 90a]. The area of network operation, administration, 

maintenance, and provisioning (OAMP) is a very complex field due to the intertwining of 

very different function: data transmission, configuration management, error recovery, 

service optimization, security control, accounting, and many others. Second, due to the 

geographical distribution of networks, as well as evolution over time, application 

specifications must achieve a high-level of abstraction and genericity: the specifications 

must stay valid for a wide variety of equipment from different manufacturers, as well as 

for various configurations and services which evolve over time. Complexity is also due to 

the large variety and number of components: various pieces of equipment, multiple 

services, numerous users and applications. Also, each component must present some of 

the different functionalities previously stated. With respect to the intended functionalities, 

not all components need to be specified. Also, the level of details to be considered for a 

given component may vary. This phase is intended to help stating the intended 

functionalities of the application to be designed and focusing on the relevant aspects 

only. 



7 

 

The application to be specified may concern an existing domain. For instance, network 

management applications are usually defined for existing networks. Therefore, the 

application domain already exists and the new functions must cope, at the appropriate 

abstraction level, with existing components. Generally, the design of an application starts 

with a (possibly empty) given domain, and new components or new aspects of existing 

components are added. Such an approach promotes re-use of specifications since it does 

not isolate a given application from existing and future ones. Also, this promotes some 

"orthogonality" principles since different functional aspects can be added without 

modifying existing ones. 

 

The last point to consider is the intended purposes of the specifications. We use the term 

system model to denote the specification of a domain together with its functionalities. 

Such a model may be used for various purposes: 

 

(1) Formal verification, to check the consistency of the design, and/or the  correctness 

of algorithms. 

 

(2) Documentation for some hardware and/or software architecture. 

 

(3) Simulation, for user training, for future system development analysis, or as  a 

prototype before building a larger scale system. 

 

(4) Performance analysis. 

 

(5) Automated software production. 

 

Different formalisms may be required to achieve these different goals. Even with the 

same formalism, different specification styles may be adopted. For instance, "intentional" 

or "extensional" styles might be preferred (see Section 3.6). Also, the level of details to 

be included in the model greatly depends on its intended use.  

 

The results of this preliminary phase are more of a set of guidelines for the following 

phases than formal results. They should help the designer to focus on relevant purposes 

and to determine the level of abstraction required for each component. 

 



8 

As an example of such a result, see the informal, textual, description of the database 

example in Section 4.1. Only the structure, cost, and weights of the parts are considered 

though it is very likely that a real manufacturing database would include many other 

aspects. 

 

Though this phase is presented as a preliminary phase, our experience showed that these 

issues should be constantly considered throughout the entire design process. 

 

2.2  Phase 2: Domain Definition 

 

The domain definition phase is intended to capture the relevant elements of the existing 

or foreseen domain, together with their essential characteristics. The result should be a 

description of the domain as a set of entities together with the various relationships 

among them that are relevant to the functionalities and purpose of the model. This phase 

can be refined in the following sub-phases: 

 

(1) The first one is to identify entities of interest, together with their specific 

characteristics. Various entities exist, and are usually characterized with specific 

properties covering different aspects such as state, value, and structure. These entities 

can be represented as objects and attributes whatever the target language is. 

 

(2) A second sub-phase is the identification of the various relationships existing 

among these entities. They usually cover different aspects of the application: 

 

(2.1) Structuring aspect, represented by the aggregation relationship, often stated 

as "is-part-of" or "is-made-of" relationships; this relationship helps to define 

appropriate abstraction levels; i.e., whether a given entity must be handled as a 

whole or as a set of components; aggregation can be static or dynamic. 

 

(2.2) Typing aspect, represented by the inheritance relationship, often stated as 

"is-a" relationship; different entities in the domain may share some common 

characteristics which can be specified in a generic template (or type); templates 

can be specialized for various purposes; e.g., to specialize inherited features or to 

add some new ones. 

 



9 

(2.3) Functional aspects: many identified relationships stem from the 

functionalities the designer intends to specify; also, some of these relationships 

are static while some are dynamic. Object-oriented languages allow a designer to 

formally specify these   relationships: aggregation and functional relationships are 

represented by means of attributes, while subtyping is well captured by the 

inheritance mechanism.  

 

Examples of entities belonging to the domain described in Section 4.2 are the "Part", 

"BasePart", "CompositePart", and "Supplier" entities. Aggregation   is illustrated by the 

"CompositePart" entity made of "CompositePart" or"BasePart" entities. Inheritance is 

illustrated by "BasePart" and "CompositePart" entities both being "Part". A specific 

"Supplied" relationship exists among the "BasePart" and "Supplier" entities. 

 

(3) The next sub-phase is consistency checking, which applies to both entities and 

relationships: 

 

(3.1) Entities having common attributes might be specialized instances of more 

generic types; common characteristics may be grouped within common templates. 

 

(3.2) An entity may include orthogonal (unrelated, or independent)  aspects; 

therefore, it may be defined as inheriting of some more general entities separately 

specified. 

 

(3.3) Relationships among entities may be represented as attributes of these 

entities; some relationships may be better represented as specific entities. 

 

(3.4) Relationships may lead to define entities functionalities; i.e., they may be 

defined as operations, rather than attributes, during the next phase; (see Section 

2.3). 

 

(3.5) Relationships must be considered with respect to the inheritance lattice; a 

relationship stated for general templates might not hold as such when coming to 

more specialized entities, and thus should be more precisely defined. 

 



10 

(3.6) Some relationships may have constraints; as an example of such a 

constraint, see the "Acyclicity" applying to the structure of the database example 

in Section 4.2. 

 

(4) A last sub-phase is to (re)write a design documentation where the identified   

components appear clearly. Since the formal model may be less readable , the textual, 

informal, documentation should closely match the system   model. 

 

2.3  Phase 3: Functions Definition 

 

The function allocation phase intends to distribute the required functionalities among the 

identified entities. There are four important aspects to this process: 

 

(1) Since entities are represented as objects, the functions they have to perform are 

defined as operations they must offer. An operation is formally defined   as a 

procedure or a function; i.e., with some input and output parameters, which must be 

objects too. These parameters must be defined if possible. 

 

(2) Having identified the operations, the designer must allocate them to some objects.  

For each operation, the designer must consider which entity seems the "most natural" 

one to offer the operation. Several points are to be considered: 

 

(2.1) When an operation can be offered by several entities, it might be better to 

allocate it to a common ancestor in the inheritance lattice. 

 

(2.2) When an operation does not seem to fit a particular entity, or seems to 

naturally belong to very different entities, or seems to correspond to some 

cooperative processing by several entities,  it might be convenient to allocate it to 

a new "support" entity introduced for the purpose of allocating the operation.  

 

(2.3) Operation parameter types should be specified with respect to the entities 

offering them; for instance an operation offered by a high-level entity might have 

some general parameter types, but these parameter types will be refined when the 

operation is inherited.  

 



11 

Examples of operation definition and allocation to entities are shown in Section 4.3. The 

"cost" operation is allocated to the "Part" entity. The result of this operation is an integer. 

 

(3) The next point is to consider the support entities introduced during the allocation 

process and to integrate them within the application domain. The same process as in 

Phase 2 should be reapplied; this favors the re-use of software specifications since the 

resulting structured domain can be re-used when defining future applications in the 

same field. In Section 4.3, the "DBInterface" support entity is introduced to offer the 

"compute_cost" operation. 

 

(4) Since this phase may lead to new entities and operations they offer, the textual 

specification should be rewritten such that all identified entities appear clearly and 

their interactions are expressed in terms of operations. 

 

2.4  Phase 4: Behaviors Definition 

 

This last phase consists of the definition of the behaviors of the various entities for the 

allocated operations. This process mainly depends on the knowledge and expertise of the 

designer in the specific field. However, some general principles can be applied:  

 

(1) For each object, it is first necessary to define the accepted sequences of 

operations. 

 

(2) For each operation offered by a given object, there are two possibilities: 

 

(2.1) The behavior for that operation is simple enough so it can be easily specified 

with the language statements; the necessary processing is described in terms of 

state changes, attribute modifications, and interactions with other objects. 

 

(2.2) The behavior is complex, and a refinement process can be applied to it; the 

technique is to consider the processing to be performed as a specialized 

"application" which can be specified by repeating the design process from Phase 

2 to 4, until all components are  fully specified. 

 

As an example of behavior specification without refinement, see the algorithms for the 

"compute_cost" and "cost" operations in Section 4.4. 



12 

3.  Characteristics of Mondel 

 

As mentioned above, the design of Mondel was influenced by many different existing 

languages. This section provides a discussion of the considerations that lead to the 

particular choices made for Mondel. Table 1 provides an overview of the features of 

various programming and specification languages. Most features indicated in the table 

are discussed in more detail below. None of these existing languages included all those 

features that we considered important for the kind of applications foreseen. 

 

3.1.  Standard Features of Object-Oriented Languages 

 

Mondel adopts many language elements which are common in most object-oriented 

languages, such as the following.  

 

(1) Object types, instances and classes: A specification defines a certain number of 

object types. Each newly created object instance belongs to a given type which 

defines its properties. Using the inheritance structure discussed below, a given type 

definition may be used to define more specific subtypes of objects. We say that an 

object instance belongs to the object class A  if it either belongs to the type A  or one 

of the subtypes of A. 

 

(2) Attributes: An object type definition may include a certain number of named 

attributes. This means that each object instance of that type will have fixed references 

to other object instances, one for each attribute. A typical example is an Employee 

object which has attributes named First_name, Family_name, Sex and Salary. An 

attribute may be declared non-visible; by default, an attribute is visible which means 

that any object "knowing" the object may also access its attribute. It may also be 

declared internal, which means that it is defined by the internal behavior of the 

object; otherwise it must be provided as effective parameter when the object instance 

is created. For instance, the attribute Salary could be internal and its value could be 

determined by an operation Fix_salary. The other attributes of an Employee could be 

provided when an Employee instance is created. 



13 

 

X 

Intra-object 

 

 

Ltd 

X 

Co-routines 

 

X 

Ltd

PC 

PC 

PC 

PC 

PC with queue 

Multi-Rv 

Co-routines 

Multi-Rv, PC 

PC with queue 

High 

Average 

Average 

High 

Average 

Low 

High 

High 

High 

Average 

Good

PC: Procedure Call 
Rv:   Rendezvous 
Ltd: Limited

T
Y

P
IN

G

G
E

N
E

R
IC

IT
Y

IN
H

E
R

IT
A

N
C

E

O
B

JE
C

T
 S

U
P

P
O

R
T

P
E

R
S

IS
T

E
N

C
E

C
O

M
M

U
N

IC
A

T
IO

N
 

M
E

C
H

A
N

IS
M

R
E

A
D

A
B

IL
IT

Y

F
O

R
M

A
L

 
S

E
M

A
N

T
IC

S

P
A

R
A

L
L

E
L

IS
M

Ada  

Argus 

C++ 

Eiffel 

Emerald 

Lotos 

Modula 3 

Mondel 

Pool 

Smalltalk 

Traces

E
X

C
E

P
T

IO
N

 
 
 
 
 
 
 
 
 
 

X 
 
 
 

X 
 

X 
 

Ltd 
 

X

X 
 
? 
 
 
 

X 
 

X 
 
 
 

X 
 

X 
 
? 
 
 
 

Ltd

 
 
? 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 
? 
 

X 
 

Ltd 
 

X 
 

X 
 

X 
 

X 
 
 
 

X 
 

X 
 

X 
 

X 
 

X X

Intra-object 
Inter-object

 
 

X 
 
 
 

Ltd 
 
 
 
 
 
 
 

X 
 
 
 
 
 

X 
 
 
 
 
 

X 
 
 
 
 
 

X 
 

X 
 
 
 
 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 
 
 

[Bray 85]

[Lisk 88]

[Lipp 89]

[Meye 88]

[Blac 87]

[Iso 87c]

[Card 88b]

[Amer 87]

[Gold 83]

[Hoff 88]

 

 

Table 1  Comparaison Chart 

 

 

(3) Operations: The definition of a type may include the declaration of named 

operations (sometimes called "methods") which may be invoked by other objects on 

object instances of that class. Each operation has a fixed number of parameters 

(which are objects), and it may return an object as result.  

 



14 

(4) Typing: Mondel supports strong type checking based on the declared object 

types. Generic classes (i.e. with type parameters) are also supported. Therefore the 

type consistency of the effective parameters of operation invocations and object 

instantiations can be checked by a compiler, except in certain cases involving generic 

types. The language also includes an operator to dynamically determine the type 

conformance relation between type parameters. A CASE construct allows performing 

different actions depending on the type of a given parameter or the result of an 

operation. 

 

(5) Behavior: The execution of an operation implies in general certain state changes 

and possibly the execution of other operations on other objects which are "known" to 

the object which executes the operation. We call "behavior of an object type" the 

information which is known about the execution of operations and the initialization of 

a newly created object instance. 

 

3.2.  Methodological Aspects: "Everything is an Object"  

 

Simplicity is important for language design. The approach that "everything is an object" 

[Amer 87, Blac 87] limits the number of concepts to be introduced. This is in contrast to 

LOTOS [ISO 88b] which includes "processes" and "abstract data types", or Argus [Lisk 

88] which includes normal objects and "guardians" which have special properties.  

 

However, it is important to verify that important concepts found in the systems to be 

specified can be naturally modelled with the concepts that the language provides. The 

following comments are intended to show how certain important system aspects can be 

described. 

 

(1) Record structure: The familiar "record" data structure can be modelled by an 

object type which has attributes that correspond to the fields contained in the record 

structure. 

 

(2) Entity/Relationship models (see also Section 2): Mondel distinguishes the class 

of persistent objects which must explicitely be deleted; normal objects are considered 

to disappear as soon as no reference to them exist from any persistent object instance 

(automatic garbage collection is assumed). Entities and instances of relation tuples 

can be modelled by persistent objects. The entity attributes are simply modelled by 



15 

normal Mondel attributes, however, relationships may be modelled in different 

manners.  

 

(3) Union types: Variant record structures are found in most programming languages; 

the fact that an object class includes several different subclasses can be expressed in 

the inheritance structure of the types definitions (see below). Mondel includes a 

CHOICE construct which allows the straightforward declaration of such an object 

class. The CASE construct mentioned in Section 3.1 can be used to determine to 

which subtype a given object instance belongs. If type parameters are considered as 

attributes (see Section 5.4), then the CHOICE construct may also be used to define 

enumeration types, such as:  type colour = choice blue, green, red endtype. 

 

(4) Variables: While many aspects of object-orientation can be combined with the 

functional programming paradigm, there are often aspects of systems that are 

naturally modelled by the changing state of an object. While the attributes of an 

object refer to a fixed object acquaintance (which is determined during the 

initialization of the attribute), it is often convenient to use attributes of variable type. 

For this purpose, Mondel includes predefined generic object classes, such as VAR, 

SET, SEQUENCE which may be used to define attributes which may change their 

state. For instance, an attribute of class VAR[Integer] is an integer variable which 

may be updated through the predefined operator ":=" in the usual manner, and be read 

through the operator "^". SET and SEQUENCE objects represent typed sets or linear 

lists of objects, respectively. Like VAR objects, their "content" may be read and 

changed through the usual predefined operations.  

 

It is noted that the ASN.1 notation [ISO 87b] used for the description of open distributed 

systems standards has been considered during the design of Mondel. In fact, the concepts 

found in that language can be naturally written in Mondel [Boch 90b]. 

 

3.3.  Communication and Concurrency 

 

Three approaches to introducing concurrency in object-oriented systems have been 

considered [Amer 87]: 

 

(1) The objects of the systems are activated by several concurrent  "processes". 

 



16 

(2) Operation calls are asynchronous, that is, an object calling the operation of 

another object may continue its activities in parallel with the object executing the 

called operation. 

 

(3) Each object is a "process" (approach taken in Pool [Amer 87]). 

 

In Mondel, we generalize approach (3) by allowing for parallel activities within a single 

object instance [Trip 89]. The behavior of an object can be defined by a PARALLEL 

construct which includes independently parallel activities, similar to "behavior 

expressions" in LOTOS [Loto 87c]. In addition, Mondel includes a FORALL construct 

which allows the parallel execution of a certain task for all object instances of a certain 

class, which is similar to ESTELLE [ISO 88a] and Argus (FOREACH construct, [Lisk 

88]).  

 

In this context, the issues of inter-object communication must be discussed. Three kinds 

of communication primitives may be distinguished: 

 

(1) Message passing where the called party is not synchronized with the caller (e.g. as 

used in Actor systems [Agha 87]). 

 

(2) (Remote) procedure call (RPC) where the caller will wait until the callee has 

issued (possibly implicitely) a RETURN statement (used in many languages, such as 

Pool, Argus, and ADA). 

  

(3) Full rendez-vous interaction, where the caller obtains implicitely feedback about 

the willingness of the caller to execute the requested operation, and may persue other 

alternatives as long as the callee has not started the execution. Certain languages 

allow rendezvous interactions with more than two processes [Buck 83, Loto 89], and 

the use of parameter values to determine which one of several processes will be 

involved in a given rendezvous.   

 

We have chosen synchronized communication because it is more suitable for the 

description of abstract interfaces [Boch 90d]. According to the RPC paradigm, it is 

assumed that the calling object "knows" the called object on which the operation is 

invoked (Note: This is in general not required in the case of "full rendezvous"). It is clear 



17 

that the RPC paradigm is easier to implement in a distributed environment (see for 

instance [Blac 87]) than full rendezvous (see for instance [Gao 89]).  

 

In most cases, Mondel specifications use the RPC approach. However, the use of the 

CHOICE statement allows the calling object to foresee alternate actions which may 

depend on the readiness of the called objects and certain restrictions on parameter values 

which the latter may impose in the form of PROVIDED clauses associated with the 

acceptance of an operation call. 

 

3.4.  Conformance Relation and Inheritance 

 

Various forms of inheritance have been considered in different object-oriented languages 

(e.g. [Blah 88], [Card 88a]). While often only simple inheritance is considered, that is, 

each type has at most one parent (supertype), Mondel allows for a form of multiple 

inheritance where a given type may inherit from several supertypes, as long as the 

inherited properties are without contradiction.  

 

The intention is that an instance of a subtype can be used in any specification context 

where an instance of one of its supertypes can be used. We call this relation in the 

following "conformance": a subtype conforms to the more general supertype. There are 

different aspects of object behavior that are relevant to the conformance relation, such as 

the following (see also Boch 89]). 

 

(1) Sets of values: The set of objects belonging to a subtype is included in the set of 

objects belonging to its supertype. 

 

(2) Attributes: A conforming object has (at least) all the attributes defined for the 

more general object type. The attributes may be more specialized (conforming). 

 

(3) Operation signatures: A conforming object has (at least) all the operations 

defined for the more general object type, where the operation result must be 

conforming and the input parameters must be inversely conforming (see for instance 

[Blac 87]). 

 

(4) Behavior of operations: The effects of the operations of the refined type satisfy 

the requirements specified for the more general object type. This includes the 



18 

requirements for the obtained results, as well as the resulting state changes induced 

on the object executing the operation. 

 

(5) Blocking properties: If the supertype object blocks the execution of a given 

operation in certain situations, then a refined object must also block in such 

situations. 

 

The conformance relation has an important role to play for the validation of 

specifications in the form of type checking. As most languages that include strong type 

checking, Mondel requires that each effective parameter of an operation call (or each 

effective attribute of a newly created object) is an object which conforms to the class of 

the corresponding formal parameter declaration (or attribute definition). Most of these 

checks can be  done at compilation time.  

 

For the aspects (2) and (3) above, it is possible to define the conformance relation 

between object types based on their structure [Blac 87]. In contrast, in Mondel the 

conformance relation is based on the inheritance relation among object types as 

explicitely included in the text of the specification. The compiler can check that these 

conformance requirements  are met when the inheritance relation is used. The other 

conformance requirements, however, are difficult to check automatically and should be 

verified by the person writing the specification. 

 

The advantages and disadvantages of inheritance with type checking and generic types 

(i.e. types with formal type parameters) has been discussed in the context of Eiffel [Meye 

86]. We follow this approach by allowing for user defined generic object types. Although 

Mondel introduces specific syntactic constructs for the type parameters in order to make 

the use of generic classes more readable, we think that, formally, the effective type 

parameters could be considered as instances of the class TYPE, and a type parameter as 

an attribute of class TYPE, as discussed in Section 5.4. 

 

3.5.  State Transitions 

 

In the design of functional languages, one tries to avoid the concepts of "state" and "state 

transitions". However, in many applications, in particular for distributed systems, the 

concept of the state of an object seems important, since the result of an operation may 

depend on the past history in which the object performing the operation was involved. As 



19 

far as its future behavior is concerned, the past history of an object instance is represented 

by its state.  As in Emerald [Blac 87], Mondel distinguishes objects that never  change 

their state, such as integers. In general, operations that  do not change the state of an 

object are called "pure" (as in  ESTELLE [ISO 88a]) and the calling syntax for pure 

operations is distinguished to make specifications more readable (The symbol "."  is used 

to introduce the call of a pure operation, while the symbol "!" is used for other operation 

calls). 

 

The state of an object instance is determined by the place in the behavior definition 

where the point of execution control of the object resides. In addition, the states of the 

attributes have an influence on the behavior of the object. The attributes may in particular 

be of the predefined types VAR, SET, SEQUENCE, the content of which may be 

changed through the execution of the corresponding  predefined operations,  such as 

assignment ":="  or "add element". 

 

While the state changes of the different objects throughout the system may proceed in 

parallel, unless they are explicitely synchronized through operation calls, Mondel also 

includes the concept of transactions which are atomic operations, as known from the 

database area [Gray 81]. The execution of different atomic operations is assumed to be 

scheduled such that their execution appears to be sequential (serializable). Like most 

proposals for nested atomic actions (e.g. Argus [Lisk 87, Lisk 88] and Locus [Muel 83]), 

Mondel has automatic recovery after failures only at the highest level, not for subactions. 

 

3.6.  Specification Styles 

 

A well-know method of software specification takes an approach where two 

complementary languages are used: (1) The program is specified by assertions, usually in 

the form of input/output assertions associated with the procedures or functions, and 

invariants for program loops and shared monitors. (2) The program is implemented by an 

algorithmic description in the form of program code. Program verification, then consists 

of verifying that the program code satisfies the assertions and invariants if the 

environment of the program satisfies the input assertions. 

 

Two descriptive approaches, assertional and algorithmic, can also be found in the 

specification language LOTOS [ISO 88b], where the behavior expressions (based on a 

modified CCS [Miln 80] are largely algorithmic, while the data type definitions, 



20 

following an algebraic abstract data type approach [Ehri 85], are largly assertional. It is 

interesting to note that the latter specifications become "executable" by using a rewriting 

formalism, provided certain restrictions on the form of the specifications are observed. 

Both approaches can often be used to describe the same given behavior [Gotz 86].  

 

It is clear that a specification language can be used for writing specifications in different 

styles. Sometimes, different specifications of the same system are developed where one 

specification is more defined or more detailed than another. Sometimes they are assumed 

to be equivalent. The algorithmic style is often closer related to implementation, while an 

assertional style leads often to more abstract specifications. Different styles related to the 

LOTOS language are discussed in [Viss 88]. The so-called "constraint-oriented" style is 

mentioned in particular which allows the separate specification of different constraints 

that must be satisfied by the object behavior. Multiple inheritance can be used to obtain 

this specification style in many cases. However, in certain cases, the different constraints 

are embodied by different objects. To describe such situations, Mondel introduces the 

concept of a "controlled" attribute which is an object onto which the controlling object 

imposes its own constraints. This has been used to describe the abstract interfaces 

contained in the OSI reference model [Mond 90b]. 

 

In Mondel, the algorithmic style is supported relatively directly by the statements of the 

languages. The assertive style is also supported, in particular through the following 

features: 

 

(1) Assertions: An ASSERT statement may be included anywhere in the behavior 

definition of an object. It verifies that a specified assertion is satisfied. Furthermore, 

in the absense of an algorithmic behavior definition, the ASSURE statement indicates 

which output assertions will be satisfied by the specified operation or procedure. 

 

(2) Invariants: Invariants may be defined for each given object type or may be 

associated with a group of definitions. The invariants define assertions that will be 

validated after the execution of each transaction operation (see above). This construct 

may be used to describe integrity constraints for the defined data structures. 

 

(3) Assertive behavior definition: As an alternative to the algorithmic specification 

style supported by the Mondel statements, the use of an assertive style has been 

considered, but not yet elaborated. Such a style may be more appropriate for certain 



21 

types of object behaviors. For instance, the behavior of the predefined object types 

have been specified using the "Traces" notation of [Hoff 88]. 



22 

4.  An Example 

 

In this section, we illustrate the language Mondel and the object-oriented design 

methodology with a simple database example taken from [Atki 87]. The Mondel 

specification is given in the Appendix. In the following sections, we discuss how this 

specification has been obtained following the phases of the methodology described in 

Section 2. 

 

4.1  Phase 1: The Problem  

 

The database represents the inventory of a manufacturing company.  It consists of a set of 

parts in which we distinguish the composite and base parts. The former corresponds to  

the parts  manufactured by the company whereas the latter corresponds to those bought 

from the outside. The database represents, in particular, the way the composite parts are 

manufactured; i.e. the subparts involved (which may themselves be composite), the cost 

of such an assembly and the mass increment. Note that an instance of part represents a 

particular kind of part and its characteristics; the database does not record the individual 

parts processed by the factory. It makes sense that, for example, part A is used in  the 

manufacture of parts B and C which are both used in the assembly of part D. The 

composition relationship corresponds therefore to a directed acyclic graph. Finally, for 

the base parts, the database must record the purchase cost, the total mass and other 

relevant information concerning the different suppliers. 

 

Our task consists of formalizing the database description and defining three simple 

transactions as follows: 

 

Task 1:  Describe the database. 

Task 2:  Select all the imported parts that cost more than $100. 

Task 3:  Compute the cost of a composite part. 

Task 4:  Record a new manufacturing step in the database, that is, how a new 

composite part is manufactured from subparts. 

 

4.2.  Phase 2: Description of the Application Domain 

 

This phase yields an enumeration of the relevant entities and relationships. It consists of 

two results:  



23 

 

(1) An entity/relationship diagram, which offers a qualitative description of the 

domain (see Figure 1). 

 

(2) A partial Mondel specification.  

 

Part

Composite Part

N*UsedIn

component

composite

quantity

Supplier Base Part

Supplied
partby DBaseInterface

 
 

Figure 1. Entity/Relationship Diagram 

 

The entities are named Part, BasePart, CompositePart and Supplier. They are shown as 

boxes (we do not consider the DBInterface yet; it will be discussed in Section 4.3). The 

relationships are named Supplied and UsedIn and are shown as ovals. N* denotes the set 

of positive integers and is used to quantify the UsedIn relationship. Every entity or 

relationship is represented in Mondel as a type definition. 

 

The Part type represents all parts involved in the manufacturing process. The 

CompositePart and BasePart types are two refinements of Part. BasePart represents the 

imported parts whereas CompositePart represents those manufactured within the 

company.  

 

The relationship Supplied links base parts and their suppliers. The UsedIn relationship 

defines the decomposition of composite parts into components. For example, let "u" be 

an instance of UsedIn. One can say: "u.quantity of u.component(s) are used in the 

manufacture of u.composite".  



24 

4.2.2 The Attributes 

 

In contrast to the diagram of Figure 1, the Mondel specification in the Appendix includes 

also the attribute definitions of the entities and the relationships (as well as the operation 

and behavior definitions discussed below). For instance, consider the following partial 

specification: 

 

type Part = Entity with  

 name  :  String  key;  ... 

 

type BasePart = Part with 

 purchase_cost :  Integer; 

 total_mass :  Integer;  ... 

 

type CompositePart = Part with 

 assembly_cost  :  Integer; 

 mass_increment  :  Integer;  ... 

 

 It shows the way the attributes are defined in Mondel.  The Part type has an attribute 

"name". As indicated by the keyword KEY, each instance of Part is uniquely identified 

by the value of this attribute. In addition to the inherited attribute "name", the BasePart 

type has the attributes "purchase_cost" and "total_mass". Similarly, the CompositePart 

type has two more attributes defining the assembly cost and the mass increment resulting 

from the assembly.  

 

Attributes are also used to express the plain arrows of the Figure 1. As an example, we 

have the following relationship definitions: 

 

type Supplied = RelationShip with 

 part  :  BasePart key;  

 by :  Supplier  key; 

endtype Supplied 



25 

type UsedIn = RelationShip with 

 composite :  CompositePart  key;  

 component  :  Part key; 

 quantity  :  Integer; 

endtype UsedIn 

 

The first two attributes of UsedIn and Supplied indicate the entities related by an instance 

of these relationships. In addition, UsedIn has an attribute (in the E/R model sense) 

named "quantity".  The keywords KEY indicate that an instance of Supplied or UsedIn is 

uniquely identified by the combination of two attributes. 

 

4.2.3 Acyclicity 

 

According to the requirements given in Phase 1, the <composite, component> 

relationship must be acyclic. In order to formally describe this constraint, we introduce a 

pure boolean operation "use" on the Part type. An expression such as p.use(p') yields true 

if and only if there exists a non-empty path in the <composite,component> graph starting 

from p and ending at p'. The acyclicity property of UsedIn is specified as the following 

invariant: 

 

invariant 

 forall  p : Part  do 

  assert  not  p.use(p);  

 end; 

 

That is, a part p cannot be a used as a subpart of itself. 

  

4.3 Phase 3: Identification of Operations 

 

Operations must be introduced for handling the Tasks 2 to 4 listed in phase 1. For Task 2, 

one can imagine an operation named "select_base" with a parameter "threshold" and 

defined by  the following algorithm:  



26 

procedure select_base(threshold : Integer) : Set[String]  =  

 define result = new Set[String]   --   Defines a new set initially empty. 

 in   

  forall part : BasePart  

  suchthat  part.cost >= threshold do 

   result!put(part.name);      --  Collects the Part names. 

  end;  

 end; 

 return result;  --  Transmits the result to the caller. 

endproc select_base 

 

The question is:  Which objects should be attributed with this operation? This task 

concerns only the BasePart entities. Therefore, defining "select_base" as a BasePart 

operation seems appropriate. However, in the case where no BasePart instance exists, the 

"select_base" operation cannot be invoked, even if it makes sense. Consequently, we 

defined the DBInterface type to support the "select_base" operation. It is also explicitly 

shown in the E/R diagram to emphasize the fact that it is an entity part of the 

specification. Similarly, we defined a "compute_cost" operation for Task 3. 

 

type DBInterface = Entity with 

operation 

 select_base (threshold :  Integer) :  Set[String] pure  atomic; 

 compute_cost (part_name :  String) :  Integer  pure  atomic;  ... 

 

Only the operation signatures are provided, that is,  the operation names, the parameter 

names and types, and the result types. Other qualifiers are also given. For example, a 

pure operation has no side effects. Atomic operations correspond to transactions (see 

section 3.5). We do not consider the details of Task 4. A signature might be attributed to 

the interface in the same way as above.  

 

4.4  Phase 4: Behavior Definitions  

 

In this phase, we make the operation definitions more specific. The algorithms proposed 

in the Appendix use standard recursive techniques. For example, let us consider the 

"compute_cost" operation. Its algorithmic definition is given by a procedure with the 

same name  defined in the WHERE  clause of the DBInterface type.  



27 

 

procedure compute_cost(part_name : String) : Integer =  

 ifexist  p:Part  

 suchthat  p.name =  part_name then  return  p.cost; 

 else   ...    

 

The IFEXIST statement selects a part with the specified name and return its cost. This 

implies support of a "cost" operation by all part instances. We define the following 

signature: 

 

type Part = Entity with ... 

operation 

 cost  :  Integer  pure; ... 

 

However, the algorithmic definition is not provided in the Part type. It depends on 

whether the part is a base part or composite part. In the case of a base part, the cost is 

simply given by the value of the "purchase_cost" attribute, as defined by the "cost" 

procedure in the WHERE clause of the BasePart type.  For a composite part, it  

corresponds to the value of its "assembly cost" attribute  added to the costs of all its 

subparts. This recursive definition appears in the WHERE clause of the CompositePart 

type (see the Appendix). 

 

The definition of Task 4 is not given. It can be easily constructed based on the following 

elements. Object creation is achieved using the Mondel operator "new". For example, the 

expression "new BasePart(100, 10) as Part("foo")" creates a new BasePart part named 

"foo" with purchase cost 100 and total mass 10. Care should be taken that a sequence of 

such expressions within the scope of a transaction preserves the constraints expressed in 

the specification (e.g. invariant, key). 

 

Finally, a behavior must be provided to define the sequence in which the operations may 

be invoked. The keyword "behavior exclusive" is a shorthand notation to express the fact 

that the operations are executed sequentially. Other sophisticated behavior descriptions 

are possible but not needed here. 



28 

5. Verification/Simulation/Implementation Issues 

 

The full definition of a programming/specification language consists of two parts: i) the 

syntax and static semantics,  and ii) the dynamic semantics. The syntax and static 

semantics define how basic symbols can be combined to build valid language sentences. 

For Mondel, this part has been defined using context-free and attribute grammars [Leco 

89] and has been implemented by a compiler written in Prolog, which also generates the 

internal representation used by the Mondel interpreter described below. 

 

The dynamic semantics associates a meaning to the valid language sentences. The 

dynamic semantics can be defined using complementary informal and formal methods. 

Informal methods use natural language such as English which is a notation that can be 

understood by a large group of people. Nevertheless, this type of semantic description is 

often ambiguous and open to many different interpretations. On the other hand, formal 

methods use mathematical notations. A precise language description can be obtained and 

the implementation is therefore easier to make. Moreover, we get the possibility of 

formal verification (to be discussed in Section 5.3). 

 

To define the formal semantics of Mondel [Barb 90a] we adopted the operational 

approach. In this approach an abstract machine executes a specification. The meaning of 

specification statements is expressed in terms of actions made by the abstract machine. 

We more particularly applied the technique of Plotkin [Plot 81] where state/transition 

systems are taken as machine models. This technique has also been applied to define the 

semantics of the POOL object-oriented language [Amer 86]. In our approach we use a 

slightly different notation. We use first order logic restricted to Horn clauses [Kowa 79] 

to define the inference rules. The translation of the dynamic semantics into Prolog is 

straightforward and we were able to obtain a simulation environment in a relatively short 

time period [Will 90]. The simulator is described in Section 5.2. Finaly, Section 5.4 

discusses a new version of Mondel being developed which supports the concept of 

dynamically modifiable specifications. 

 

5.1  Formal Definition of the Dynamic Semantics 

 

The execution of a Mondel specification is modelled by a set of states with transitions 

between them, starting from a specific initial state. The transitions are given by a 

transition relation denoted "" (arrow) with the functionality: 



29 

 

   States  Actions  States 
 

Where States  is a set of states and Actions  a set of actions. The transition relation is 

defined inductively by a set of inference rules. The dynamic semantics of Mondel has 

therefore the two aspects of representation of states and definition of inference rules. We 

first discuss state representation. 

 

A state is a set of active objects. We have an abstract representation for objects. Let us 

consider the following Mondel type definition: 

 

type A = object 

 with x:B; 

behavior 

 new C(x); 

endtype 

 

Instances of type A  have an attribute x  of type B. Their behavior consists of the single 

statement new   which creates an instance of type C. An active object of type A  will be 

represented as the following tuple: 

 

<id1, A, { id2/x }, new C(x)> 

 

The first component of the tuple is a unique identifier generated for this object. The 

second element is the object type name. The third component is a binding which 

associates actual objects to formal attributes. In this particular example the object 

reference id2 is associated to the formal attribute x. The last component represents the 

statement being executed by the object. When new C(x)   is executed the state is 

expanded with a new element of type C. 

 

In general the semantics of an active object is obtained by combining together several 

inference rules. For the sake of legibility, inference rules are structured into different 

levels. The lowest level is the so-called "object level". As an example, we show the rules 

related to object creation. At the object level we have the following rule: 

 

if 



30 

 Obj = <Id, T, Bind, new TypeName(Id1,...,Idn)>  (1) 

 fattr(TypeName) = AttrName1,...,AttrNamen  (2) 

 Bind ={ Id1/AttrName1,...,Idn/AttrNamen }  (3) 

 NewId = newsym      (4) 

 Obj' = <Id, T, Bind, NewId>    (5) 

then 

 (Obj, new(TypeName,Bind,NewId), Obj')  (6) 

 

This rule says, on line (6), that the object Obj can execute the action 

new(TypeName,Bind,NewId)  and be transformed into Obj'  if the preconditions of lines 

(1) to (5) are fulfilled. Line (1) defines the structure, i.e. the state, that Obj  must have. 

On line (2), the function fattr  yields for every type name its ordered list of formal 

attributes. This list is used on line (3) to define the binding of the created object for which 

a new identifier is generated on line (4) by the newsym   function. The newsym  function 

is not in pure first order logic and is introduced for the sake of simplicity. It can easily be 

translated into pure logic by keeping track, from one state to another, of identifiers in use. 

At last, line (5) defines the successor state  Obj'   of the creator. 

 

The full definition of object creation also requires a higher level inference rule defining 

the transition from a set  objects to a new set of objects which will contain the new 

instance: 

 

if 

 S = A + { Obj }        (1) 

 (Obj,new(TypeName,Bind,NewId),Obj')    (2) 

 S' = A + { Obj', <NewId, TypeName, Bind, getinitbeh(TypeName)> (3) 

then 

 (S,new(TypeName,Bind,NewId),S')     (4) 

 

This rule defines, on line (4), a state change of the set of objects S  on action 

new(TypeName,Bind,NewId)  with successor state S'. Line (1) describes the structure of S   

which is a set of objects A  plus an object Obj. On line (2) we say that Obj   is the creator 

of the new object. Here we apply the object level inference rule defined above. Line (3) 

defines the structure of the successor object set. The function getinitbeh   yields for every 

type name the corresponding initial behavior. 

 



31 

5.2  Prolog Interpreter 

 

Implementing a language while it's syntax, static and dynamic semantics are  unstable 

requires a host language suitable for rapid prototyping. With Prolog, it was possible, 

during the development of Mondel, to have a working implementation that could keep up 

with the periodic language updates. 

 

The syntax analysis and the static semantics checking of Mondel specifications are made 

by a compiler which generates a collection of Prolog terms. This intermediate 

representation is equivalent to the Mondel text, except that some compiling information 

is extracted and the code is flattened such that every identifier becomes globally unique. 

 

The translation to Prolog terms is quite straightforward. For example the Mondel type A,  

introduced in Section 5.1, would be represented as follows: 

 

type(t3, [[attr(V1,a1),t2]], new(t1,[[attr(V1,a1),a3]]). 

ren(t1,'C'). 

ren(t2,'B'). 

ren(t3,'A'). 

ren(a1,'x'). 

ren(a3,'y'). 

 

where ren  (rename) facts are used to bind internal names with names appearing in the 

source text. Here it is assumed that the type C   has a formal attribute named y. A term 

attr pairs a Prolog variable with an attribute, to store the actual value. 

 

The example below shows the object creation rule of Section 5.1 translated into Prolog. It 

can be understood as follows: A low level transition new(..)  is possible on object OBJ 

that results in the modified object OBJP. 

 

low_trans(OBJ, new(TypeName, Bindp, NewId), OBJP) :- 

 % This object is ready to execute the NEW statement 

  OBJ = obj(Id, Type, Bind, new(TypeName, ActualAttr)), 

 % Get the formal attribute list of type TypeName 

  fattr(TypeName,FormalAttr), 

 % Bind actual attribute values to formal attributes 



32 

  bind(ActualAttr,FormalAttr,Bindp), 

 % Generate a unique identifier for the new object 

  newsym(NewId), 

 % Next state of object OBJ 

  OBJP = obj(Id, Type, Bind, NewId). 

 

Notice that this rule does not create a new object. This is done by the following higher 

level rule which refers to the rule above. 

 

high_trans(STATE,new(TypeName, Bindp, NewId),NEXT_STATE) :- 

 % There is one object OBJ from STATE 

  partition(OBJ,STATE,REST_STATE), 

 % That can perform a low level transition "New" 

  low_trans(OBJ,new(TypeName, Bindp, NewId),OBJP), 

 % Get type and use it as a template 

  type(TypeName,Bindp, Behavior), 

 % New created object 

  NEW_OBJECT = obj(NewId, TypeName, Bindp, Behavior), 

 % Build the next system state 

  NEXT_STATE = [OBJP, NEW_OBJECT | REST_STATE]. 

  

The heart of the interpreter is a set of inference rules, similar to above, which we 

obtained from the formal semantics of Mondel by translation into Prolog. In addition, the 

sys  predicate, defined below, plays the role of an inference engine. It takes as input a set 

of Mondel objects (STATE) and tries to apply an inference rule. The resulting state 

(NEXT_STATE) becomes the input to the predicate in the next step. The process will 

stop when no more transitions are enabled, that is a deadlock has occurred. 

 

sys(STATE,TRANSITION,NEXT_STATE) :- 

 % Try a transition 

  high_trans(STATE, TRANSITION, NEXT_STATE),!, 

 % NEW_STATE becomes the new system state 

  sys(NEXT_STATE,_,_). 

 

The similarity between the formal semantics rules and the Prolog rules is obvious and 

shows that  Prolog is well suited for fast implementation. However, a major drawback of 



33 

Prolog is its slow execution and its hunger for computer space. This can be alleviated by 

reducing data that is passed between rules. For instance, one could store objects as 

dynamic Prolog clauses by using Prolog assert   and retract   predicates; then the objects 

state will not be passed from one rule to another as the "" (arrow) relation is applied. 

 

5.3  Verification 

 

The goal of verification is to determine if a system specification is correct and satisfies 

certain properties. Properties can be classified into two categories: (1) general properties, 

and (2) semantic properties. General properties are independent of the system function. 

Examples are finiteness, termination and deadlock-freeness. 

 

On the other hand, semantic properties are closely related to the system function. For 

example, in the field of protocols, conformance of the protocol to the service is a 

semantic property always required. In our approach to the verification of Mondel 

specifications, we use assertions on states to define the semantic properties. 

 

The verification of properties of Mondel specifications can be done using two 

approaches: (1) a simulation based approach, and (2) an analytic Coloured Petri Net 

(CPN) based approach. With the help of the Prolog simulator described above, 

specifications can be executed to discover bugs. This method covers the full Mondel 

language. However, in the general case, the analytical approach is partial because not all 

possible execution paths are explored. 

 

We developed a second verification approach [Barb 90b] which works for an interesting 

subset of Mondel and uses the theory of CPNs [Jens 87]. For this Mondel subset, a CPN 

operational semantics has been defined. This semantics is consistent with the semantics 

discussed in Section 4.1 and permits direct application of the CPN reachability analysis 

technique. This reachability analysis method is particularly interesting because it can 

reduce the explored state space by exploiting symmetry relations between states. 

 

Similar Petri net based approaches have been developed for  languages with anonymous 

processes such as Lotos [ISO 88a]. Processes are modelled as unstructured Petri net 

tokens. In opposition to these anonymous processes, a Mondel object has an identity and 

a set of acquaintances; i.e., identifiers of other objects. We discovered that these aspects 



34 

can be modelled quite nicely by CPNs. Objects are modelled as structured tokens which 

represent identifiers and acquaintances. 

 

Several authors have proposed the application of Petri net verification methods to high-

level language specifications. Various approaches described for LOTOS [Gara 89, Marc 

89]  and ADA [Mura 89, Shat 88, Suzu 90] involve the translation of the specification 

written in these languages into Petri nets. In contrast, we have shown that an important 

Petri net verification methods can be adapted to be directly applied to a subset of the 

LOTOS language [Barb 90b]. Similarly, the approach described in this paper. 

 

By virtue of the CPN semantics for Mondel, we apply the reachability analysis technique 

for CPNs [Jens 87] directly to Mondel. A set of active Mondel objects is interpreted as a 

set of structured CPN tokens. A set of tokens is also a marking; i.e., a state. Tokens and 

markings are expressed in such a form that it is possible to obtain from a marking, by 

application of inference rules, executable transitions together with the corresponding 

successor markings. Therefore, from the initial object set, we can derive transition firing 

sequences or the whole reachability graph of the CPN associated with a Mondel 

specification.  

 

5.4 Reflective Language Definition 

 

In the formalism used to define the semantics of Mondel, the type definitions are static 

and used as templates for instance creation. Only the instances of a type are considered 

as objects. In order to support the construction of dynamically modifiable specifications, 

we need to have access to the type specifications  during run time. A step in this direction 

is to consider types as objects and to enhance Mondel to provide means for altering type 

specifications. The principle of considering types as objects within a system, leads us to 

look at reflection and reflective architectures as a promising choice. The reflection 

principle has been studied for several object-oriented programming languages [Maes 87], 

[Ibra 88], [Coin 87], [Yone 89], [Male 90]. 

 

A language is called reflective if it uses the same internal structures to represent data and 

programs.  In conventional systems, computation is performed only on data that 

represents entities of an application domain. In contrast, a reflective system must also 

contains some data which represent the structural and computational aspects of itself. We 



35 

designed RMondel, a reflective version of Mondel, by introducing a reflective semantics 

which extends the semantics described in Section 5.1.  

 

Reflectivity in object-oriented languages is a natural consequence of the use of objects to 

represent the language constructs as well as the entities of an application domain. In the 

reflective version of Mondel, we adapt the reflection techniques [Maes 87] in a manner 

similar to ObjVLisp [Coin 87] and ObjVProlog [Male 90]. In contrast to the latter 

approaches, RMondel is strongly typed, supports object persistence, and considers not 

only types as objects, but also operations (methods), attributes and behaviors, as 

indicated by the instantiation and inheritance graphs of  Figure 2. The instantiation graph 

represents the "instance of" relationship, and the inheritance graph represents the 

"subtype of" (inheritance) relationship. TYPE and OBJECT  are the respective roots of 

these two directed  graphs. The initial system state  contains the kernel types: TYPE, 

OBJECT, AttributeDef, Operation and Behavior.  

 

In order to keep a system in a consistent state, we defined [Erra 90] a set of constraints 

that must be satisfied by each type and its related types in the inheritance graph.These 

constraints define the consistency requirements of the type lattice which corresponds to 

the static semantics rules checked by the Mondel compiler. They are specified as 

invariants within the specification of the  TYPE type. 

 

The behavior part of a user object is defined by mean of  objects which are 

specializations of the Statement type. Each action defined in a type is represented by an 

instance of one of the Statement type specializations which correspond to the different 

kinds of statements in the Mondel language [Erra 90]. The RMondel interpreter, specified 

in Mondel, is considered as an object which has a global view of the objects within the 

system. This interpreter object can select an object ready to perform a transistion, or a 

pair of objects involved in a rendez-vous, and then perform the corresponding transitions 

by changing the state of the selected object(s). 

 

 



36 

inherit from
Instance of 

TYPE

OBJECT

Operation
AttributeDef

Behavior

 
 

 

Figure 2.  RMondel kernel types  



37 

6.  Conclusions 

 

The language Mondel presented in this paper belongs to the class of object-oriented 

languages, and shares many features with many other languages in this class (see for 

instance Table 1). These features were chosen in view of the intended application of 

Mondel as a specification language for describing real distributed systems and their 

control and management. The following features of Mondel are worth special mention, 

since they are not found in many other existing languages: 

 

(1) Concurrent operations, not only among different objects, but also within a single 

object, which may be simultaneously involved in several actions. 

 

(2) A Mondel specification has certain aspects of databases; in particular, persistent 

objects can be accessed through the equivalent of database queries. The concept of 

atomic transactions is also supported which makes it possible to provide distributed, fail-

safe implementations of Mondel specifications by using standard fault recovery 

procedures developed for distributed databases. 

 

(3) Communication among objects is synchronous. It is realized through the well-known 

concept of (remote) procedure call (RPC) with return parameters, which is used in most 

cases in a straightforward manner. However, when the alternatives in a CHOICE 

statement contain either calls of operations on other objects with output guards, or the 

acceptance of operations called by other objects with input guards, then the simple RPC 

concept allows the description of quite powerful synchronization requirements. 

 

(4) Mondel has a formally defined semantics, which simplifies the construction of 

Mondel interpreters and compilers, and makes it possible to apply certain automated 

tools for the partial verification of Mondel specifications. 

 

These features, together with multiple inheritance, strong typing and genericity, and an 

open-ended design to include assertional specifications of object properties, make 

Mondel a quite unique language. 

 

We have used this language for several medium-size applications, including the 

description of fault management in a communication network [Leco 90], the OSI 

Reference Model [Mond 90b], and the OSI Directory service [Poir 90]. It is important to 



38 

note that the major difficulty in developing such formal descriptions is the structuring of 

the universe of discourse in the context where initially only vague and unstructured 

descriptions exist. We have therefore studied various design methodologies originally 

developed for database design or software engineering, and have adapted them into an 

object-oriented framework, as described in Section 2. The systematic application of such 

a methodology is helpful in organizing the system design, and ensuring its completeness. 

 

We are presently working on formalizing the inheritance concept not only in respect to 

operation names and parameter type checking, but also in respect to the corresponding 

behavior definitions [Boch 89]. These issues have an impact on the maintenance and 

comparison of specifications, and must be considered in the context of environments for 

object-oriented system design and implementation. We are also working on a reflexive 

definition of Mondel, as described in Section 5.4, which makes it possible to describe an 

environment for the developement of Mondel specifications, together with the developed 

specifications, as a single system. 

 

Acknowledgements 

 

The authors thank A. Bean who contributed many interesting ideas to the design of the 

Mondel Language. They also thank A. Finkel and J. Lebensold for many fruitful 

discussions. The design methodology and the Mondel language described in this paper 

were developed within a research project jointly funded by Bell Northern Research and 

the Computer Research Institute of Montréal (CRIM). Financial support from the Natural 

Sciences and Engineering Research Council of Canada is also acknowledged. 



39 

Appendix: A Mondel Specification 

 

unit DBaseExample use Predefined 

 

invariant 

 forall  p : Part  do 

  assert  not  p.use(p);  

 end; 

 

type Part = Entity with  

 name  :  String  key;  

operation 

 use  (p:Part) :  Boolean pure; 

 cost  :  Integer  pure;  

endtype Part 

 

type CompositePart = Part with 

 assembly_cost  :  Integer; 

 mass_increment  :  Integer; 

behavior exclusive 

where 

 

 procedure use (p:Part) : Boolean = 

  ifexist u : UsedIn 

  suchthat (u.composite = self) 

           and ( (u.component = p)  or  (u.component.use(p)) ) 

  then 

   return true; 

  else 

   return false; 

  end; 

 endproc use 



40 

 procedure cost : Integer = 

  define result = new Var[Integer] in  

   result := assembly_cost; 

   forall u : UsedIn  

   suchthat u.composite = self do 

    result := result^ + u.quantity * u.component.cost; 

   end; 

   return result^; 

  end; 

 endproc cost 

endtype CompositePart  

 

type BasePart = Part with 

 purchase_cost :  Integer; 

 total_mass :  Integer; 

behavior exclusive 

where 

 

 procedure use (p:Part) : Boolean = 

  return  false; 

 endproc use 

 

 procedure cost : Integer =  

  return purchase_cost; 

 endproc cost 

endtype BasePart 

 

type Supplier = Entity with 

 name : String   key; 

endtype Suppliers 

 

type UsedIn = RelationShip with 

 composite :  CompositePart  key;  

 component  :  Part key; 

 quantity  :  Integer; 

endtype UsedIn 



41 

type Supplied = RelationShip with 

 part  :  BasePart key;  

 by :  Supplier  key; 

endtype Supplied 

 

type DBInterface = Entity with 

operation 

 select_base (threshold :  Integer) :  Set[String] pure atomic; 

 compute_cost (part_name :  String) :  Integer  pure atomic; 

behavior exclusive 

where 

 

 procedure select_base(threshold : Integer) : Set[String]  =  

  define result = new Set[String] in 

   forall part : BasePart 

   suchthat part.cost >= threshold do 

    result!put(part.name); 

   end;  

   return result; 

  end; 

 endproc select_base 

 

 procedure compute_cost(part_name : String) : Integer =  

  ifexist  p:Part  

  suchthat  p.name =  part_name then 

   return p.cost; 

  else 

   -- error processing    

  end; 

 endproc compute_cost 

endtype DBInterface 

 

endunit DBaseExample 



42 

7. References 

 

[Agha 87] G. Agha, C. Hewitt, "Concurrent Programming Using Actors" in: A. Yoneza, 

M. Tokoro (Eds.), Object-Oriented Concurrent Programming, MIT Press, 1987. 

 

[Amer 86] P. America, J. de Bakker, J. N. Kok, J. Rutten, "Operational Semantics of a 

Parallel Object-oriented Language", Proceedings of the 13th ACM Conference on 

Principles of Programming Languages, 1986. 

 

[Amer 87] P. America, "POOL-T:  A parallel Object-oriented Language"  in: A. Yoneza,  

M. Tokoro (Eds.), Object-Oriented Concurrent Programming,  MIT Press, 1987. 

 

[Atki 87] M. P. Atkinson, O. P. Buneman, "Types and Persistence in Database 

Programming Languages", ACM Computing Surveys, Vol. 19, No. 2, June 1987. 

 

[Bail 88] S. Bailin, "An Object-oriented Specification Method for ADA", ACM 

Proceedings of the Fifth Washington Ada Symposium, June 1988. 

 

[Bail 89] S. Bailin, "An Object-oriented Requirements Specification Method", CACM, 

Vol. 32, No. 5, May 1989.  

 

[Barb 90a] M. Barbeau, G. v. Bochmann, "Formal Semantics of Mondel", Progress 

Report Document No. 11 for CRIM/BNR Project, 1990. 

 

[Barb 90b] M. Barbeau, G. v. Bochmann, "Formal Verification of Mondel Object-

oriented Specifications Using a Coloured Petri Net Technique", in preparation. 

 

[Barb 90c] M. Barbeau, G. v. Bochmann, "Verification of Lotos Specifications: A Petri 

Net Based Approach", Proc. of Canadian Conference on Electrical and Computer 

Engineering, Ottawa, 1990. 

 

[Barb 90d] M. Barbeau, G. v. Bochmann, "Extension of the Karp and Miller Procedure to 

Lotos Specifications", Proc. of Computer-Aided Verification Workshop, New Brunswick 

NJ, 1990. 

 



43 

[Blac 87] A. Black, N. Hutchinson, E. Jul, H. Levy, L. Carter, "Distribution and Abstract 

Types in Emerald", IEEE Trans. on Soft Eng. Vol. 13, No.1, January 1987, pp. 65-76. 

 

[Blah 88] M. R. Blaha, W. J. Premerlani, J. E. Rumbaugh, "Relational Database Design 

using an Object-Oriented Methodology", C. ACM, Vol. 31, No. 4, April 1988. 

 

[Boch 89] G. v. Bochmann, "Inheritance for Objects with Concurrency", submitted for 

publication. 
 

[Boch 90a] G. v. Bochmann, P. Mondain-Monval, L. Lecomte "Formal Description of 

Network Management Issues", Publication #734, Département d'IRO, Université de 

Montréal, 1990. 

 

[Boch 90b] G. v. Bochmann, P. Mondain-Monval, S. Poirier, L. Lecomte,  M. Barbeau, 

N. Williams, "System Specification with Mondel and Relation with Other Formalisms", 

CRIM/BNR Project Progress Report No. 13, 1990. 

 

[Boch 90c] G. v. Bochmann, "Protocol Specifications for OSI", Computer Network and 

ISDN Systems, April 1990. 
 

[Boch 90d] G. v. Bochmann, A. Finkel, "Impact of Queued Interaction on Protocol 

Specification and Verification", Proc. Intern. Symp. Interoperable Inf. Systems (ISIIS), 

Nov.  1988, Tokyo, pp. 371-382. 
 

[Bois 89] H. Bois, "Une méthode de développement de logiciels fondée sur le concept 

d'objet et exploitant le langage ADA", Thèse de Doctorat, Université Paul Sabatier, 

Toulouse, France, October 1989. 

 

[Booc 86] G. Booch, "Object-Oriented Development", IEEE TSE, February 1986. 

 

[Bray 85] G. Bray, D. Pokrass, "Understanding ADA", John Willey and Son, 1985. 

 

[Buck 83] G. N. Buckley, A. Silberschatz, "An Efficient Implementation for the 

Generalized Input-output Construct of CSP", ACM Tr. on Progr. Lang. and Systems, 

Vol. 5, No. 2, April 1983, pp. 223-235. 

 



44 

[Card 88a] L. Cardelli, "A Semantics of Multiple Inheritance", Information and 

Computation 76, 1988, pp. 138-164. 

 

[Card 88b] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, G. Nelson, 

"Modula 3 Report", D. E. C., 1988. 
 

[Chen 76] P. P. Chen, "The Entity-Relationship Model - Toward a Unified View of 

Data", ACM Trans. on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36. 

 

[CCITT 87] CCITT, "Specifiction and Description Language SDL", Recommendation 

Z.100, 1987. 

 

[Coin 87] P. Cointe, "Metaclasses are First Class: The ObjVLisp Model", OOPSLA'87, 

ACM Sigplan Notices, Vol. 22, No. 12, pp. 156-167. 

 

[Erra 90] M. Erradi, G. v. Bochmann, "Definition de RMondel", in preparation. 

 

[Ehri 85] H. Ehrig, B. Mahr, "Fundamentals of Algebraic Specification 1", Springer-

Verlag, Berlin, 1985. 

 

[Gao 89] Q. Gao, G. v. Bochmann, "Distributed Implementation of Lotos Multi-

rendezvous", Proceedings of PSTV IX, Enschede, 1989. 

 

[Gard 89] G. Gardarin, P. Valdurief, "Relational Databases and Knowledge Bases", 

Addison-Wesley, 1989. 

 

[Gara 89] H. Garavel, E. Najm, "Tilt: From Lotos to Labelled Transition Systems", in: P. 

H. J. van Eijk, C. A. Vissers and M. Diaz (Eds.), The Formal Description Technique 

Lotos, North-Holland, 1989.  

 

[Gold 83] A. Goldberg,  D. Robson, "Smaltalk-80 - The Language and its 

Implementation", Addison Wesley, 1983. 

 

[Gotz 86] R. Gotzhein, "Specifying Abstract Data Types with Lotos", Proc. IFIP 

Workshop on Protocol Specification, Testing and Verification, VI, North Holland Publ., 

1986, pp. 15-26. 



45 

 

[Gray 81] J. Gray, "The Transaction Concept: Virtues and Limitations", Proc. IEEE 

Conf. on VLDB, Cannes, Sept. 1981, pp. 144-154. 

 

[Hoff 88] D. Hoffman, R.  Snodgrass, "Trace Specifications: Methodology and Models", 

IEEE Trans. on SE, Vol. 14, No. 9, Sept. 1988, pp. 1243-1252. 
 

[Ibra 88] M. H. Ibrahim and F. A. Cummins, "KSL: A Reflective Object-Oriented 

Programming Language", IEEE, Proceedings of the Int. Conf on Computer Languages, 

1988, pp. 186-193. 

 

[ISO 87a] ISO/TR 9007, "Concepts and Terminology for the Conceptual Schema and the 

Information Base", 1987. 
 

[ISO 87b] ISOTC 97/SC 6, "Specification of Abstract Syntax Notation One", IS 8824, 

1987. 

 

[ISO 88a] ISO, "Information Processing Systems - Open Systems Interconnection - 

ESTELLE - A Formal Description Technique Based on an Extended State Transition 

Model", IS 9074, 1988. 

 

[ISO 88b] ISO, "Information Processing Systems - Open Systems Interconnection - 

LOTOS - A formal Description Technique Based on the Temporal Ordering of 

Observational Behavior", IS 8807, 1988. 

 

[ISO 89a] DP 10165-2, "Systems Management - Object Management Function". 

 

[ISO 89b] DP 10165-2, "Structure of Management Information - Definition of 

SupportObjects". 

 

[ISO 89c] DP 10165-3, "Structure of Management Information - Definition of 

Management Attributes". 

 

[ISO 89d] DP 10165-4, "Structure of Management Information - Guidelines for Managed 

Object Definition". 

 



46 

[Jalo 89] P. Jalotte, "Functional Refinement and Nested Objects for Object-

orientedDesign", IEEE TSE, Vol. 15, No. 3, March 1989. 

 

[Jens 87] K. Jensen, "Coloured Petri Nets", in W. Brauer et al. (Eds.): Petri Nets - Central 

Models and their Properties, LNCS 254, Springer, 1987. 

 

[Kowa 79] R. Kowalski, "Logic for Problem Solving", The Computer Science Library, 

1979. 

 

[Leco 89] L. Lecomte, "Sur la compilation d'un langage orienté-objet", M.Sc. Thesis, 

Université de Montréal, 1989. 

 

[Leco 90] L. Lecomte, G. v. Bochmann, P. Mondain-Monval "Un modèle orienté objet 

pour le système de transmission FD-565", CRIM/BNR Progress Report Document No. 8, 

1990. 

 

[Lipp 89] S. B. Lippman, "C++ Primer", Addison-Wesley, 1989. 

 

[Lisk 87] B. Liskov, D. Curtis, P. Johnson, R. Scheifler, "Implementation of Argus", 

Proceedings of the 11th Symposium on Operating Systems Principles, 1987. 

 

[Lisk 88] B. Liskov, "Distributed  Programming in ARGUS", C. ACM, Vol. 31, No. 3, 

March 1988. 

 

[Maes 87] P. Maes, "Concepts and Experiments in Computational Reflection", 

OOPSLA'87, ACM Sigplan Notices, Vol. 22, No. 12, pp.147-155. 

 

[Male 90] J. Malenfant, "Conception et implantation d'un langage de programmation 

logique, par objets et repartie", Ph.D. Thesis, Département d'IRO, Université de 

Montréal, January 1990. 

 

[Marc 89] S. Marchena, G. Leon,  "Transformation from Lotos Specs to Galileo Nets", 

in: K. J. Turner (Ed.), Formal Description Techniques, North-Holland, 1989.  

 
[Meye 86] B. Meyer, "Genericity Versus Inheritance", OOPSLA'86 Proceedings, 1986. 

 



47 

[Meye 87] B. Meyer, "Reusability: the Case for Object-oriented Design", IEEE Software, 

March 1987. 

 

[Meye 88] B. Meyer, "Object-oriented Software Construction", C. A. R. Hoare Series 

Editor, Prentice Hall, 1988. 

 

[Miln 80] R. Milner, "A Calculus of Communicating Systems", Lecture  Notes  in  CS,  

No. 92, Springer Verlag, 1980. 

 

[Mond 90a] P. Mondain-Monval, G. v. Bochmann, "An Object-oriented Software Design 

Methodology", Progress Report Document No. 7 for CRIM/BNR project, June 1990. 

 

[Mond 90b] P. Mondain-Monval, G. v. Bochmann, "An Object-oriented Software 

Architecture for the OSI Basic Reference Model", Publication #736, Département d'IRO, 

Université de Montréal, 1990. 

 

[Muel 83] E. T. Mueller, J. D. Moore, G. J. Popek, "A Nested Transaction Mecanism for 

LOCUS", C. ACM, 1983. 

 

[Mura 89] T. Murata, B. Shenker, S. M. Shatz, "Detection of Ada Static Deadlocks Using 

Petri Net Invariants", IEEE TSE, Vol. 15, No. 3,  1989, pp. 314-326. 

 

[ODP 88] Working Document on Topic 6.1 - "Modeling Techniques and their Use in 

ODP", ISO/IEC JTC1/SC21 N 3196, December 1988. 

 

[Parn 72] D. Parnas, "On The Criteria to be Used in Decomposing Systems Into 

Modules", C. ACM, Vol. 15, No. 2, 1972, pp. 1053-1058. 

 

[Poir 90] S. Poirier, "Evaluation du langage de spécification Mondel à la description de 

protocoles de communication", M.Sc. Thesis, Université de Montréal, 1990. 

 

[Plot 81] G. D. Plotkin, "A Structural Approach to Operational Semantics", Aarhus 

University, Report DAIMI FN-19, 1981. 

 



48 

[Shat 88] S. M. Shatz, W. K. Cheng, "A Petri Net Framework for Automated Static 

Analysis of Ada Tasking Behavior", The Journal of Systems and Software, Vol. 8, No. 5, 

1988, pp. 343-359. 

 

[Suzu 90] S. Toshinori, S. M. Shatz, T. Murata, "A Protocol Modeling and Verification 

Approach Based on a Specification Language and Petri Nets", IEEE TSE, Vol. 16, No. 5, 

May 1990,  pp. 523-536. 

 

[T1M1 89] Committee T1-Telecommunications Standards Contribution - "Modelling 

guidelines", February 1989 
 

[Trip 89] A. Tripathi, E. Berge, "An Implementation of the Object-oriented Concurrent 

Programming Language SINA", Software-Practice and Experience, Vol. 19, No. 3, 

March 1989, pp. 235-236. 

 

[Viss 88] C. Vissers, G. Scollo, M. v. Sinderen,  "Architecture and Specification Style in 

Formal Descriptions of Distributed Systems",  Proc. IFIP Symposium on Prot. Spec., 

Verif. and Testing, Atlantic City, 1988. 

 

[Ward 89] P. T. Ward, "How to Integrate Object orientation with Structured Analysis and 

Design", IEEE Software, March 1989. 

 

[Will 90] N. Williams, G. v. Bochmann, "Description technique d'un simulateur pour le 

langage Mondel", Progress Report Document No. 10 for CRIM/BNR Project, 1990. 

 

[Yone 89] A. Yonezawa, T. Watanabe, "An Introduction to Object-based Reflective 

Concurrent Computation", ACM Sigplan Notices, Vol. 24, No. 4, 1989, pp. 50-54. 


